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Brownian Motion with Dry Friction

P.-G. de Gennes1
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A small object (Solid or droplet) is placed on a horizontally vibrating plate,
imposing an acceleration γ (t) in the form of a white noise. The object experi-
ences dry friction (due to soild/solid interaction, or to contact angle hysteresis
in the case of a droplet). The object is driven by a force

γ (t)−�σ(t)

where σ(t),=±1, depending on the sign of the velocity. We discuss the motion
at two levels: (i) in terms of simple scaling laws, (ii) by a propagator technique.

(a) When � is below a certain crossover value �*, we expect an unper-
turbed (Langevin) Brownian motion.

(b) When �>�*, we expect a reduced diffusion coefficient proportional to
�−4 for small �.

KEY WORDS: Brownian motion; Friction; Tribology; Random walks;
Acoustic noise.

1. PRINCIPLES

Dry friction of a solid on a solid was studied first by L. da Vinci.(1) His
results were rediscovered by Amontons.(1) The basic laws have been under-
stood – in terms of rubbing asperities – in the 20th century, mainly thanks
to the British school.(1) When an object lies on a horizontal plate, it does
not start to move until the horizontal force f reaches a certain threshold.
For macroscopic objects, the threshold is proportional to the weight of
the object. For mesoscopic objects (of micrometer size), the same sort of
threshold may still exist, provided that the solid solid contact involves a
large number of asperities.
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Another example involves liquid droplets (of size � 1 mm). It was
found recently by Daniel and Chaudury.(2) that a droplet deposited on a
flat surface and exposed to a non symmetrical horizontal vibration of the
plate, moves at a well defined speed. This has been interpreted in terms
of hysteresis in the contact angle.(2) The droplet problem is slightly more
complex than the solid/solid problem, because it involves two degrees of
freedom: the center of gravity of the droplet, and also the center of the
contact surface. This is of practical interest: if the vibration frequency
is close to the resonance frequency of a pinned droplet, the effects are
enhanced. But the general principles are very similar.

The driven motion of drops may be of some interest in microfluidics.
We now also have observations and theoretical predictions for the

driven motion for the solid/solid case.(3) This led us naturally to consider
another case of interest, where the vibration is a random noise, and the
solid performs a new form of Brownian motion (Fig. 1).

In the reference frame of the vibrating plate, we assume a one dimen-
sional equation of motion for the solid velocity V (t)= dx

dt
of the form

dV

dt
+ 1

τ
V =γ (t)−σ(V )� (1)

where τ is a Langevin relaxation time,(4) and −γ (t) is the horizontal
acceleration of the plate in the laboratory frame, corresponding to a white
noise.

〈γ (t1)γ (t2)〉=Kδ(t1 − t2) (2)

In equation (1), σ(t) = V (t)/|V (t)| is the sign of the velocity (with
σ (0) = 0), and � defines the acceleration threshold.

It is important to note that, even when |γ (t)|<�, we may still have
some motion. But, if |γ |<� and V = 0 simultaneously, then the particle
stops, and starts again only when, at some later time t ′, we find |γ (t ′)|>�.

To discuss the magnitude of γ compared with �, Eq. (2) is oversim-
plified: with a strict white noise, the probability of having γ < � in any

+ + + + + + + + + + + + +   +   +   +   +   +   + 

(a) (b) (c)

Fig. 1. Three possible examples of Brownian motion induced by random vibrations of a
supporting plate, (a) A liquid drople,(2) (b) A macroscopic coin,(3) (c) A microcrystal.
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time interval (however small) is zero. A crude but simple way of overcom-
ing this is to divide the time axis in short intervals (duration τc).

(a) Inside each interval we assume a constant γ with a gaussian dis-
tribution and a mean square F 2.

(b) The values of γ in different intervals are uncorrelated.

We ultimately write instead of Eq. (2):

〈γ (t1) γ (t2)〉=F 2 |t1 − t2|<τc

〈γ (t1) γ (t2)〉=0 |t1 − t2|>τc
(3)

The white noise limit corresponds to τc �τ , and the constant K in Eq. (1)
is given by

K =F 2τc (4)

We shall analyse the motion qualitatively in Section 3. But, to make
the discussion more concrete, we first comment upon the various control
parameters which appear in Eq. (1).

2. RELATION TO OBSERVABLE QUANTITIES

Our object may be a coin moving on a plastic plate, as studied
recently by A. Buguin.3

(1) We can in principle measure � by a static experiment with a tilted
plate (tilt angle θ ). At a critical angle θc the object starts to move, and we
have

�=g tan θc (5)

(2) We can measure the Langevin time τ on a horizontal plate by
kicking the object (in the absence of any noise) and imposing a prescribed
initial velocity V0. Solving Eq. (1) with γ ≡0, we find that the particle tra-
jectory is defined by

V (t)= (V0 +�τ)e−t/τ −�τ (6)

and the particle stops at a time t1

t1 = τ ln
[

1+ V0

�τ

]
(7)
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Thus, from t1 we can go back to τ . In practical cases, with a coin on a
plastic plate, a typical value of τ is a few milliseconds.

(3) This implies that, to reach the white noise limit, we must have a
correlation time of the vibrations τc which is much smaller than τ and
thus less than 10−4 sec.

(4) Consider now a case with random noise, but no friction – i.e. a
pure Langevin problem (�=0).(4)

Then the velocity correlations have the classical structure

〈V (0)V (t)〉=〈V 2
L〉e−t/τ (8)

〈V 2
L〉= 1

2
Kτ = 1

2
F 2τcτ (9)

(The index L stands for Langevin).
We may qualitatively describe this Langevin motion as bursts of

velocity VL lasting for a time τ (although, of course, there is a distribu-
tion of amplitudes and durations).

We may possibly determine VL, on a surface without any dry friction
(measuring also the Langevin time τ for this surface) and check Eq. (9).
Note that if the noise had a purely thermal origin (no forced vibration)
we would have

K = 2kT

Mτ

where M is the particle mass and kT the thermal energy. This could be
relevant for micron-size particles on a solid.

3. A SCALING DISCUSSION OF THE MOTION

We now consider the effects of dry friction (� �= 0). Of course, if �

is comparable to the typical fluctuations F defined in Eq.(3), the particle
is completely stuck. The interesting case corresponds to the opposite limit,
��F .

(1) We can define a crossover point �=�∗ such that for ���∗ we
return to the Langevin problem (Eqs. 8, 9). If we examine Eq. (1) we see
that, at crossover, the � term should be comparable to V/τ , where V is
equal to the unperturbed rms velocity VL (Eq. 9).

�∗ = VL

τ
(10)
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(2) The interesting regime is above �∗

�∗ <�<F (11)

and it can exist provided that �∗ �F or Fτ �VL. Returning to Eq. (9)
we see that this inequality is equivalent to τ � τc, and is thus satisfied.

The condition defined by the inequalities Eq. (11) defines what we
call the partly stuck regime. From now on we concentrate on this regime.
We assume (as in section 2.4) that we can describe the typical motions in
terms of

– a velocity amplitude V�

– a correlation time for the velocities τ�.
(a) Keeping only the � term on the right of Eq. (1), and omitting

now the V/τ term on the left, we find

V�
∼=�τ� (12)

(b) Since the velocity correlation time is now τ� rather than τ , Eq. (9)
is replaced by

〈V 2
�〉 ∼= 1

2
Kτ�

∼=Kτ� (13)

(dropping all numerical coefficients).
We can solve Eqs. (12, 13) for

V�
∼= K

�
∼=VL

�∗

�
(14)

τ�
∼= K

�2
∼= τ

(
�∗

�

)2

(15)

Ultimately we can construct a scalling low for the diffusion coefficient

D ∼=V 2
�τ� ∼DL

(
�∗
�

)4
(�∗ <�<F) (16)

where DL ∼=V 2
τ is the Langevin (unperturbed) value in the absence of dry

friction.
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4. PARTLY STUCK REGIME: DETAILS OF THE CORRELATION

FUNCTION

We now assume the � satisfies the inequalities (Eq. 11) and omit the
V/τ term in Eq. (1). The velocity correlation function can be obtained
through a standard method based on the propagator �t(W |V ): this is the
statistical weight for a trajectory where the velocity starts from a value W

at time 0, and reaches a value V at time t .
To set up the transport equation for �, we think of a random walk

(along the V axis) where the position is V at a time t, and the probability
distribution is �t(W |V ). From Eq. (1) the current (along the V axis) is the
sum of a dispersion term and a drift term

J =−K
∂�

∂V
−�σ(V )� (17)

J =−K

[(
∂�

∂V

)
+2p�

]
(18)

In Eq. (8) we assumed V >0 to simplify the notation, and we introduced

p = �

2K
= 1

2
V −1

0 (19)

The transport equation for � is then

∂�

∂t
=− ∂J

∂V
(20)

∂�

∂t
=K

[
− ∂2�

∂V 2
−2p

∂�

∂V

]
(21)

The bounding condition of � at time <0 is

�t=0(V |W)= δ(V −W)Q(V ) (22)

where Q(V ) is the stationary distribution of velocities. We can obtain an
Eq. for Q(V ) by setting ∂

∂t
=0 in Eq. (20)

∂2Q(V )

∂V 2
+2p

∂Q

∂V
=0 (23)
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The (normalised) adequate solution is

Q(V )=pe−2p|V | (24)

We shall now construct the propagators � in terms of an eigenfunc-
tion expansion. Because the operator in Eq. (21) is not self adjoint, we
must first perform a transformation, writing

�t(W/V )=Q
1
2 (W)Q

1
2 (V )

∑
k

Uk(W)Uk(V )e−Ekt (25)

where the Uk(V ) are eigenfunctions of the following self adjoint equa-
tion

EkUk(V )=K

[
− ∂2

∂V 2
Uk(V )+p2Uk

]
(26)

Equation (26) must be supplemented by a boundary condition at V =
0, which is the equivalent of the cusp singularity showing up in Eq. (24)

1
Uk

dUk

dV
|V=+0 =−p (27)

The eigenmodes of Eqs. (25, 26) correspond to a one dimensional
Schrodinger equation where the particle position is V , and the potential
contains a constant term (Kp2) plus an attractive delta function potential
at the origin (equivalent to the boundary condition (27). Thus there is a
bound state.

U0(V )=p
1
2 e−pV =Q

1
2 (V ) (28)

with energy E0 =0, and a continuum of states

Uk =
(

2
Vm

) 1
2

cos(kV +ϕk) (29)

(where we have normalised the eigenfunctions in a large box of size Vm).
The phase shift angle ϕk is deduced from Eq. (27) and is defined by

tan ϕk = p

k
(30)
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The eigenvalue Ek is equal to K(p2 +k2).
The set (Up,Uk) is orthonormal and complete: we can check on

Eq. (25) that the boundary condition (22) on � is satisfied.
We can now proceed to a calculation of the velocity-velocity correla-

tion function

〈V (0)V (t)〉=
∫

dW dV �t (W |V )V W (31)

Using the fact that U0 is identical to Q
1
2 we can ultimately express

this in terms of matrix elements

(0|V |k)=
∫ ∞

−∞
U0(V )V Uk(V )dV (32)

〈V (0)V (t)〉=
∑

k

e−Ekt |(0|V |k)|2 (33)

〈V (0)V (t)〉= 4
π

∫ ∞

0
dk

pk2

(k2 +p2)3
exp

[−K(p2 +k2)t
]

(34)

Note first that Eq. (34) justifies the scaling ansatz of Section 4 (where
V� =p−l and τ−1

� =Kp2).
More precisely:

(a) the mean square velocity is

〈V 2〉= 1
4p2

(35)

(b) the diffusion constant is

D =
∫ ∞

0
〈V (0)V (t)〉dt = 1

8
K−lp−4 (36)

It is also of interest to examine the decay of the velocity correlation func-
tion at long times (t >τ�). From Eq. (34) we find:

〈V (0)V (t)〉∼= exp
(

− t

τ�

)(
τ�

t

) 3
2

(37)
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5. CONCLUSIONS

A – Brownian motion limited by dry friction could be observable in
(at least) three categories of physical systems.

(a) Micron-size solid particles under thermal noise
(b) Macroscopic particles (eg, a coin on a vibrated solid sheet) as

studied recently (under non symmetric vibrations) by A. Buguin(3)

(c) Droplets.
B – The main difficulty to be met in those experiments is (probably)

the effect of inhomogeneities: the frictional properties, summarised here by
the parameter �, may slightly when one explores different regions of the
supporting plate. In an “island”, where �>F (on an area comparable to
the contact area of the solid particle), the particle will become stuck for
ever.

C – An amusing question (raised by Y. Tsori) is the relation between
mobility and diffusion coefficient. The mobility µ is defined by applying a
small force Mγ̄ (for instance by tilting the plate) and measuring the result-
ing drift velocity 〈V 〉=µMγ̄ .

(a) For the Langevin case (�≡0) we have the Einstein result

D

µ
=M〈V 2〉 (38)

(b) When � �=0 in the partly stuck regime (�>�∗) we can get a scal-
ing estimate for D/µ, starting from Eq. (1) where we add a constant γ̄ on
the right hand side. This gives

〈V 〉=
∫ t

−∞
dt ′{〈γ (t ′)〉+ γ̄ −�〈σ(V (t ′)〉} exp

{
− t − t ′

τ

}
(39)

〈V 〉= τ [γ̄ −�〈σ 〉] (40)

We estimate 〈σ 〉 as follows (for small γ̄ ):

〈σ 〉= k〈V 〉
V�

(41)

where k is a numerical constant.
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Solving self consistently for V we find

µ= τ

M

[
1+k�2/(�∗)2]−1

D

µ
=MV 2

�[1+k�2/(�∗)2]
(42)

Thus we lose the simplicity of Eq. (38).
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Remarks. Another preprint on the same subject has recently been
produced (March 5, 2005) by Dr. Hisao Hayakawa (arXiv:cond-mat/0407789
v1 Jul 2004, to be published in Physica D). This paper discusses mainly the
steady state distribution Q(V ). On this matter it is more complete than the
present work, because it covers all values of �, while the present analysis
leading to Eq. (24) is restricted to �>�∗.
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